Serveur d'exploration sur les récepteurs immunitaires végétaux

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

RLP23 is required for Arabidopsis immunity against the grey mould pathogen Botrytis cinerea.

Identifieur interne : 000076 ( Main/Exploration ); précédent : 000075; suivant : 000077

RLP23 is required for Arabidopsis immunity against the grey mould pathogen Botrytis cinerea.

Auteurs : Erika Ono [Japon] ; Kazuyuki Mise [Japon] ; Yoshitaka Takano [Japon]

Source :

RBID : pubmed:32796867

Abstract

Necrosis- and ethylene-inducing-like proteins (NLPs) are secreted by fungi, oomycetes and bacteria. Conserved nlp peptides derived from NLPs are recognized as pathogen-associated molecular patterns (PAMPs), leading to PAMP-triggered immune responses. RLP23 is the receptor of the nlp peptides in Arabidopsis thaliana; however, its actual contribution to plant immunity is unclear. Here, we report that RLP23 is required for Arabidopsis immunity against the necrotrophic fungal pathogen Botrytis cinerea. Arabidopsis rlp23 mutants exhibited enhanced susceptibility to B. cinerea compared with the wild-type plants. Notably, microscopic observation of the B. cinerea infection behaviour indicated the involvement of RLP23 in pre-invasive resistance to the pathogen. B. cinerea carried two NLP genes, BcNEP1 and BcNEP2; BcNEP1 was expressed preferentially before/during invasion into Arabidopsis, whereas BcNEP2 was expressed at the late phase of infection. Importantly, the nlp peptides derived from both BcNEP1 and BcNEP2 induced the production of reactive oxygen species in an RLP23-dependent manner. In contrast, another necrotrophic fungus Alternaria brassicicola did not express the NLP gene in the early infection phase and exhibited no enhanced virulence in the rlp23 mutants. Collectively, these results strongly suggest that RLP23 contributes to Arabidopsis pre-invasive resistance to B. cinerea via NLP recognition at the early infection phase.

DOI: 10.1038/s41598-020-70485-1
PubMed: 32796867
PubMed Central: PMC7428006


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">RLP23 is required for Arabidopsis immunity against the grey mould pathogen Botrytis cinerea.</title>
<author>
<name sortKey="Ono, Erika" sort="Ono, Erika" uniqKey="Ono E" first="Erika" last="Ono">Erika Ono</name>
<affiliation wicri:level="4">
<nlm:affiliation>Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mise, Kazuyuki" sort="Mise, Kazuyuki" uniqKey="Mise K" first="Kazuyuki" last="Mise">Kazuyuki Mise</name>
<affiliation wicri:level="4">
<nlm:affiliation>Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Takano, Yoshitaka" sort="Takano, Yoshitaka" uniqKey="Takano Y" first="Yoshitaka" last="Takano">Yoshitaka Takano</name>
<affiliation wicri:level="4">
<nlm:affiliation>Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan. takano.yoshitaka.2x@kyoto-u.ac.jp.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32796867</idno>
<idno type="pmid">32796867</idno>
<idno type="doi">10.1038/s41598-020-70485-1</idno>
<idno type="pmc">PMC7428006</idno>
<idno type="wicri:Area/Main/Corpus">000071</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000071</idno>
<idno type="wicri:Area/Main/Curation">000071</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000071</idno>
<idno type="wicri:Area/Main/Exploration">000071</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">RLP23 is required for Arabidopsis immunity against the grey mould pathogen Botrytis cinerea.</title>
<author>
<name sortKey="Ono, Erika" sort="Ono, Erika" uniqKey="Ono E" first="Erika" last="Ono">Erika Ono</name>
<affiliation wicri:level="4">
<nlm:affiliation>Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mise, Kazuyuki" sort="Mise, Kazuyuki" uniqKey="Mise K" first="Kazuyuki" last="Mise">Kazuyuki Mise</name>
<affiliation wicri:level="4">
<nlm:affiliation>Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Takano, Yoshitaka" sort="Takano, Yoshitaka" uniqKey="Takano Y" first="Yoshitaka" last="Takano">Yoshitaka Takano</name>
<affiliation wicri:level="4">
<nlm:affiliation>Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan. takano.yoshitaka.2x@kyoto-u.ac.jp.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Necrosis- and ethylene-inducing-like proteins (NLPs) are secreted by fungi, oomycetes and bacteria. Conserved nlp peptides derived from NLPs are recognized as pathogen-associated molecular patterns (PAMPs), leading to PAMP-triggered immune responses. RLP23 is the receptor of the nlp peptides in Arabidopsis thaliana; however, its actual contribution to plant immunity is unclear. Here, we report that RLP23 is required for Arabidopsis immunity against the necrotrophic fungal pathogen Botrytis cinerea. Arabidopsis rlp23 mutants exhibited enhanced susceptibility to B. cinerea compared with the wild-type plants. Notably, microscopic observation of the B. cinerea infection behaviour indicated the involvement of RLP23 in pre-invasive resistance to the pathogen. B. cinerea carried two NLP genes, BcNEP1 and BcNEP2; BcNEP1 was expressed preferentially before/during invasion into Arabidopsis, whereas BcNEP2 was expressed at the late phase of infection. Importantly, the nlp peptides derived from both BcNEP1 and BcNEP2 induced the production of reactive oxygen species in an RLP23-dependent manner. In contrast, another necrotrophic fungus Alternaria brassicicola did not express the NLP gene in the early infection phase and exhibited no enhanced virulence in the rlp23 mutants. Collectively, these results strongly suggest that RLP23 contributes to Arabidopsis pre-invasive resistance to B. cinerea via NLP recognition at the early infection phase.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32796867</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>08</Month>
<Day>14</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>RLP23 is required for Arabidopsis immunity against the grey mould pathogen Botrytis cinerea.</ArticleTitle>
<Pagination>
<MedlinePgn>13798</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-020-70485-1</ELocationID>
<Abstract>
<AbstractText>Necrosis- and ethylene-inducing-like proteins (NLPs) are secreted by fungi, oomycetes and bacteria. Conserved nlp peptides derived from NLPs are recognized as pathogen-associated molecular patterns (PAMPs), leading to PAMP-triggered immune responses. RLP23 is the receptor of the nlp peptides in Arabidopsis thaliana; however, its actual contribution to plant immunity is unclear. Here, we report that RLP23 is required for Arabidopsis immunity against the necrotrophic fungal pathogen Botrytis cinerea. Arabidopsis rlp23 mutants exhibited enhanced susceptibility to B. cinerea compared with the wild-type plants. Notably, microscopic observation of the B. cinerea infection behaviour indicated the involvement of RLP23 in pre-invasive resistance to the pathogen. B. cinerea carried two NLP genes, BcNEP1 and BcNEP2; BcNEP1 was expressed preferentially before/during invasion into Arabidopsis, whereas BcNEP2 was expressed at the late phase of infection. Importantly, the nlp peptides derived from both BcNEP1 and BcNEP2 induced the production of reactive oxygen species in an RLP23-dependent manner. In contrast, another necrotrophic fungus Alternaria brassicicola did not express the NLP gene in the early infection phase and exhibited no enhanced virulence in the rlp23 mutants. Collectively, these results strongly suggest that RLP23 contributes to Arabidopsis pre-invasive resistance to B. cinerea via NLP recognition at the early infection phase.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ono</LastName>
<ForeName>Erika</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mise</LastName>
<ForeName>Kazuyuki</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Takano</LastName>
<ForeName>Yoshitaka</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan. takano.yoshitaka.2x@kyoto-u.ac.jp.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32796867</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-020-70485-1</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-020-70485-1</ArticleId>
<ArticleId IdType="pmc">PMC7428006</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Microbiol Methods. 2017 Nov;142:71-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28917607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2000 Jun;5(6):1003-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10911994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Nov;32(3):361-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12410814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2005 Feb 15;6:31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15713233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Nov;22(11):1331-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19810803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2013 Dec;96:191-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23993446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1998 Dec 1;12(23):3703-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9851977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Dec 15;358(6369):1431-1434</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29242345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2016 Sep;16(9):537-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27477127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2015 Oct 05;1:15140</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27251392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2011 Oct 11;7:539</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21988835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Aug;19(8):854-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16903351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Mar;19(3):270-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16570657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Mar;69(4):473-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19083153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):606-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2014;9(2):e27937</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24525519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Dec;121(4):1093-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10594097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Nov 06;10(11):e1004491</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25375108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 May;25(5):697-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22235872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2019 Aug;32(8):1038-1046</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31237473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Mar;197(4):1236-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23252678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Jul;25(7):964-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22414440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Aug;171(4):2771-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27268959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Dec 15;358(6369):1383-1384</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29242331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Dec;16(12):3496-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15548740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 May 21;26(5):2265-2281</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24850852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2006 Aug;67(16):1800-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16430931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2016;11(4):e1152438</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27074617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2004 May;42(5):367-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15191738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 May;18(3):277-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10377993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Nov 18;310(5751):1180-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16293760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Jul;25(7):896-909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22397404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Mar 26;285(13):9444-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20103591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2018 Jan;31(1):101-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29059009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stud Mycol. 2012 Sep 15;73(1):181-213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23136460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Oct;27(10):1081-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25025781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Apr 15;428(6984):764-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15085136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Feb;7(1):40-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14732440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Jul;168(3):849-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25953104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19613-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18042724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Jul;22(7):2429-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20605856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2017 Aug 4;55:109-137</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28525309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 Oct 22;163(3):670-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26496607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Jul 26;448(7152):497-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17625569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Sep;67(6):980-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21605210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):16955-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25368167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(4):e1002643</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22496661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2014 Jul 24;19(8):10717-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25061722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10359-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19520828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Sep;139(1):5-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2019 Aug 25;57:367-386</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31283435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Jan;29(1):23-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12060224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(2):493-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18028294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2012 Sep;44(9):1060-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22885923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1990 May;2(5):437-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2152169</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région du Kansai</li>
</region>
<settlement>
<li>Kyoto</li>
</settlement>
<orgName>
<li>Université de Kyoto</li>
</orgName>
</list>
<tree>
<country name="Japon">
<region name="Région du Kansai">
<name sortKey="Ono, Erika" sort="Ono, Erika" uniqKey="Ono E" first="Erika" last="Ono">Erika Ono</name>
</region>
<name sortKey="Mise, Kazuyuki" sort="Mise, Kazuyuki" uniqKey="Mise K" first="Kazuyuki" last="Mise">Kazuyuki Mise</name>
<name sortKey="Takano, Yoshitaka" sort="Takano, Yoshitaka" uniqKey="Takano Y" first="Yoshitaka" last="Takano">Yoshitaka Takano</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantImRecepV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000076 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000076 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantImRecepV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32796867
   |texte=   RLP23 is required for Arabidopsis immunity against the grey mould pathogen Botrytis cinerea.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32796867" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantImRecepV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:33:18 2020. Site generation: Sat Nov 21 12:33:47 2020